

Cambridge International AS & A Level

	CANDIDATE NAME CENTRE NUMBER		
	CHEMISTRY		9701/32
6 0	Paper 3 Advanced Practical Skills 2	N	lay/June 2023
0			2 hours
9 1 9 2	You must answer on the question paper.		
ω			
*	You will need: The materials and apparatus listed in the confidential instructior	15	
	 Answer all questions. Use a black or dark blue pen. You may use an HB pencil for any diagrams of Write your name, centre number and candidate number in the boxes at the Write your answer to each question in the space provided. Do not use an erasable pen or correction fluid. Do not write on any bar codes. You may use a calculator. You should show all your working and use appropriate units. 	0 1	9.
	INFORMATION	Ses	sion
	The total mark for this paper is 40.The number of marks for each question or part question is shown in		
	brackets [].	Labor	atory
	The Periodic Table is printed in the question paper.Important values, constants and standards are printed in the		
	 question paper. Notes for use in qualitative analysis are provided in the 		
	question paper.	For Exami	ner's Use
		1	
		2	
		3	

This document has **12** pages.

Total

Quantitative Analysis

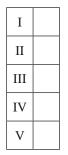
Read through the whole method before starting any practical work. Where appropriate, prepare a table for your results in the space provided.

Show the precision of the apparatus you used in the data you record.

Show your working and appropriate significant figures in the final answer to each step of your calculations.

In this experiment you will determine the relative atomic mass, A_r , of metal **M** by thermal 1 decomposition of its basic carbonate, $MCO_3 \bullet M(OH)_2$.

FB 1 is the basic metal carbonate, MCO₃•M(OH)₂.


(a) Method

- Weigh the empty crucible with its lid. Record the mass.
- Transfer all of the **FB 1** from the container into the crucible.
- Weigh the crucible, lid and FB 1. Record the mass.
- Calculate and record the mass of FB 1 used.
- Place the crucible and contents on a pipe-clay triangle.
- Heat the crucible gently, with the lid on, for approximately 1 minute.
- Heat strongly, with the lid off, for a further 4 minutes.
- Replace the lid and leave the crucible to cool for at least 5 minutes.

During the cooling period, you may wish to begin work on Question 3.

- When the crucible is cool, weigh the crucible with its lid and contents. Record the mass.
- Place the crucible and contents on the pipe-clay triangle. Remove the lid.
- Heat the crucible strongly for a further 2 minutes.
- Replace the lid and leave the crucible to cool for at least 5 minutes.
- When the crucible is cool, reweigh the crucible with its lid and contents. Record the mass.
- Calculate and record the mass of residue obtained.

Results

[5]

(b) Calculations

(i) When **FB 1** undergoes thermal decomposition, the products are the metal oxide, **MO**, carbon dioxide and water vapour.

......[1]

Give the equation for the thermal decomposition of FB 1. Include state symbols.

(ii) The amount, in mol, of carbon dioxide produced is given by the following formula.

amount of $CO_2 = \frac{\text{mass loss during heating}}{(M_r \text{ of } CO_2 + M_r \text{ of water})}$

Calculate the amount, in mol, of carbon dioxide produced in (a).

amount of CO_2 = mol [1]

(iii) Calculate the relative formula mass, M_r , of the basic metal carbonate. Show your working.

 $M_{\rm r} \text{ of } {\rm MCO}_3 {}^{\bullet} {\rm M(OH)}_2 = \dots$ [1]

(iv) Calculate the relative atomic mass of metal ${\bf M}.$

(c)	A student accidentally spilt a little of the residue before carrying out the final weighing. Predict whether the calculated value of the relative atomic mass of M will be higher or as a result of this mistake. Explain your answer.	lower
	The A_r of M will be	
	explanation	
		[1]
(d)	A student suggested that addition of sulfuric acid to the residue from (a) would show wh the basic metal carbonate had decomposed fully. State whether the student is correct. Explain your answer.	ether
		[1]
© UCLES 2		al: 11] over

- 2 In this experiment you will determine the relative atomic mass, A_r , of another metal, **X**, by a titration method using the metal carbonate, X_2CO_3 .
 - **FB 2** is $0.0460 \text{ mol dm}^{-3}$ hydrochloric acid, HC*l*.
 - **FB 3** is the metal carbonate, X_2CO_3 .
 - FB 4 is methyl orange indicator.
 - (a) Method

Preparing a solution of FB 3

- Weigh the stoppered container of **FB 3**. Record the mass in the space below.
- Tip all of the **FB 3** into the 250 cm³ beaker.
- Reweigh the container with its stopper. Record the mass.
- Calculate and record the mass of **FB 3** used.
- Add approximately 100 cm³ of distilled water to **FB 3** in the beaker.
- Stir the mixture with a glass rod until all the **FB 3** has dissolved.
- Transfer this solution into the 250 cm³ volumetric flask.
- Wash the beaker with distilled water and transfer the washings to the volumetric flask.
- Rinse the glass rod with distilled water and transfer the washings to the volumetric flask.
- Make up the solution in the volumetric flask to the mark using distilled water.
- Shake the flask thoroughly.
- This solution of X₂CO₃ is **FB 5**. Label the flask **FB 5**.

Titration

- Fill the burette with **FB 2**.
- Pipette 25.0 cm³ of **FB 5** into a conical flask.
- Add several drops of **FB 4** to the conical flask.
- Perform a rough titration and record your burette readings in the space below.

The rough titre is cm³.

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make sure any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of FB 2 added in each accurate titration.

Ι	
Π	
III	
IV	
V	
VI	
VII	
VIII	
[8]	

(b) From your accurate titration results, calculate a suitable mean value to use in your calculations. Show clearly how you obtain the mean value.

25.0 cm³ of **FB 5** required cm³ of **FB 2**. [1]

(c) Calculations

- (i) Give your answers to (c)(ii), (c)(iv), (c)(v) and (c)(vi) to an appropriate number of significant figures.
- (ii) Calculate the amount, in mol, of hydrochloric acid present in the volume of FB 2 in (b).

amount of HCl = mol [1]

(iii) Give the ionic equation for the reaction of hydrochloric acid with the metal carbonate during the titration. Include state symbols.

 \dots CO₃²⁻ \dots + \dots [1]

(iv) Calculate the concentration of X_2CO_3 , in moldm⁻³, in FB 5.

concentration of X_2CO_3 in FB 5 = mol dm⁻³ [1]

(v) Calculate the relative formula mass, M_r , of X_2CO_3 .

$$M_{\rm r} {\rm of } X_2 {\rm CO}_3 =$$
 [1]

(vi) Calculate the relative atomic mass of X.

(vii) Identify X.

[Total: 16]

Qualitative Analysis

For each test you should record all your observations in the spaces provided.

Examples of observations include:

- colour changes seen
- the formation of any precipitate and its solubility (where appropriate) in an excess of the reagent added
- the formation of any gas and its identification (where appropriate) by a suitable test.

You should record clearly at what stage in a test an observation is made.

Where no change is observed you should write 'no change'.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

If any solution is warmed, a boiling tube must be used.

Rinse and reuse test-tubes and boiling tubes where possible.

No additional tests should be attempted.

- 3 (a) **FB 6** is a solution containing one cation listed in the Qualitative analysis notes. The anion contains sulfur.
 - (i) State the reagents you would use to identify the cation in **FB 6**.

reagents

Use your selected reagents to test **FB 6**. Use 1 cm depth of **FB 6** in a test-tube for each test.

Record your observations in the space below.

(ii) Identify the anion in FB 6.Include a description of your procedure and the observations you make.

anion in **FB 6** [2]

(iii) Deduce the formula of **FB 6**.

formula of **FB 6** [1]

© UCLES 2023

9701/32/M/J/23

[Turn over

[2]

(b) You will devise chemical tests to distinguish between the two possible identities given for each of compounds FB 7, FB 8, FB 9 and FB 10.

In each case, you should:

- name the reagent or reagents you will use to identify the compound
- state any necessary conditions for your test
- use a 1 cm depth of the solution of the unknown compound and use a boiling tube if you need to warm a mixture
- carry out your test and record the observations you make (if any)
- state your conclusion about the identity of the compound.
- (i) **FB 7** is either aqueous sodium nitrate or aqueous sodium nitrite.

(ii) **FB 8** is either aqueous sodium nitrate or aqueous silver nitrate.

(iii) FB 9 is either aqueous ethanol or aqueous propan-1-ol. (In your test, do not heat but you may need to leave your reaction mixture to stand.)

FB 9 is [2]

(iv) FB 10 is either aqueous methanol or aqueous ethanoic acid.

[Total: 13]

Qualitative analysis notes

1 Reactions of cations

cation	reaction with											
	NaOH(aq)	NH ₃ (aq)										
aluminium, Al ³⁺ (aq)	white ppt. soluble in excess	white ppt. insoluble in excess										
ammonium, NH ₄ +(aq)	no ppt. ammonia produced on warming	_										
barium, Ba ²⁺ (aq)	faint white ppt. is observed unless [Ba ²⁺ (aq)] is very low	no ppt.										
calcium, Ca ²⁺ (aq)	white ppt. unless [Ca ²⁺ (aq)] is very low	no ppt.										
chromium(III), Cr ³⁺ (aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess										
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	pale blue ppt. soluble in excess giving dark blue solution										
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess										
iron(III), Fe ³⁺ (aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess										
magnesium, Mg ²⁺ (aq)	white ppt. insoluble in excess	white ppt. insoluble in excess										
manganese(II), Mn ²⁺ (aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess										
zinc, Zn ²⁺ (aq)	white ppt. soluble in excess	white ppt. soluble in excess										

2 Reactions of anions

anion	reaction							
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids							
chloride, Cl ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq))							
bromide, Br [_] (aq)	gives cream/off-white ppt. with $Ag^+(aq)$ (partially soluble in $NH_3(aq)$)							
iodide, I [_] (aq)	gives pale yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq))							
nitrate, NO ₃ ⁻ (aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil							
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with OH ⁻ (aq) and Al foil; decolourises acidified aqueous KMnO ₄							
sulfate, SO ₄ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids); gives white ppt. with high [Ca ²⁺ (aq)]							
sulfite, SO ₃ ^{2–} (aq)	gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids); decolourises acidified aqueous KMnO ₄							
thiosulfate, S ₂ O ₃ ^{2–} (aq)	gives off-white/pale yellow ppt. slowly with H ⁺							

9701/32/M/J/23

3 Tests for gases

gas	test and test result						
ammonia, NH ₃	turns damp red litmus paper blue						
carbon dioxide, CO ₂	gives a white ppt. with limewater						
hydrogen, H ₂	'pops' with a lighted splint						
oxygen, O ₂	relights a glowing splint						

4 Tests for elements

element	test and test result
iodine, I ₂	gives blue-black colour on addition of starch solution

Important values, constants and standards

molar gas constant	$R = 8.31 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}$
Faraday constant	$F = 9.65 \times 10^4 \mathrm{C}\mathrm{mol}^{-1}$
Avogadro constant	$L = 6.022 \times 10^{23} \text{mol}^{-1}$
electronic charge	$e = -1.60 \times 10^{-19} \mathrm{C}$
molar volume of gas	$V_{\rm m} = 22.4 {\rm dm^3mol^{-1}}$ at s.t.p. (101 kPa and 273 K) $V_{\rm m} = 24.0 {\rm dm^3mol^{-1}}$ at room conditions
ionic product of water	$K_{\rm w} = 1.00 \times 10^{-14} {\rm mol}^2 {\rm dm}^{-6}$ (at 298K (25 °C))
specific heat capacity of water	$c = 4.18 \mathrm{kJ kg^{-1} K^{-1}} (4.18 \mathrm{J g^{-1} K^{-1}})$

		18	² He	helium 4.0	10	Ne	neon 20.2	18	Ar	argon 39.9	36	Кr	krypton 83.8	54	Xe	xenon 131.3	86	Rn	radon -	118	Og	oganesson -													
		17			6	ш	fluorine 19.0	17	Cl	chlorine 35.5	35	Ъ	bromine 79.9	53	I	iodine 126.9	85	At	astatine -	117	Ts	tennessine o		71	Lu	lutetium 175.0	103	Ļ	lawrencium -						
		16			8	0	oxygen 16.0	16	ა	sulfur 32.1	34	Se	selenium 79.0	52	Te	tellurium 127.6	84	Ро	polonium –	116	2	livermorium		70	γb	ytterbium 173.1	102	No	nobelium -						
		15			7	z	nitrogen 14.0	15	٩	phosphorus 31.0	33	As	arsenic 74.9	51	Sb	antimony 121.8	83	Ē	bismuth 209.0	115	Mc	moscovium -		69	Т	thulium 168.9	101	Md	mendelevium -						
		14			9	U	carbon 12.0	14	N.	silicon 28.1	32	Ge	germanium 72.6	50	Sn	tin 118.7	82	РЬ	lead 207.2	114	Fl	flerovium –		68	ц	erbium 167.3	100	Еm	fermium -						
		13			5	В	boron 10.8	13	Al	aluminium 27.0	31	Ga	gallium 69.7	49	In	indium 114.8	81	Γl	thallium 204.4	113	ЧN	nihonium –		67	Ч	holmium 164.9	66	Es	einsteinium -						
		-												1		12	30	Zn	zinc 65.4	48	Cd	cadmium 112.4	80	Hg	mercury 200.6	112	C	copernicium -		66	Dy	dysprosium 162.5	98	ç	californium -
ments	Group																		11	29	Cu	copper 63.5	47	Ag	silver 107.9	79	ΡN	gold 197.0	111	Rg	roentgenium -	-	65	Tb	terbium 158.9
ole of Ele										10	28	ïZ	nickel 58.7	46	Ъd	palladium 106.4	78	Ę	platinum 195.1	110	Ds	darmstadtium -	•	64	Вd	gadolinium 157.3	96	CB	curium I						
The Periodic Table of Elements														0	27	ပိ	cobalt 58.9	45	Rh	rhodium 102.9	77	Ir	iridium 192.2	109	Mt	meitnerium -		63	Еu	europium 152.0	95	Am	americium -		
The Pe			- ⊥	hydrogen 1.0						8			iron 55.8		Ru	ruthenium 101.1	76	Os	osmium 190.2	108	Чs	hassium -		62	Sm	samarium 150.4	94	Pu	plutonium –						
												7	25	Mn	manganese 54.9	43	Ъ	technetium -	75	Re	rhenium 186.2	107	Bh	bohrium –		61	Pm	promethium -	93	dN	neptunium -				
										loc	ISS			9		ŗ	chromium 52.0	42	Mo	molybdenum 95.9	74	\geq	tungsten 183.8	106	Sg	seaborgium -		60	PN	neodymium 144.4	92		uranium 238.0		
						Key	atomic number	atomic symbol	name relative atomic mass			5	23	>	vanadium 50.9	41	qN	niobium 92.9	73	Та	tantalum 180.9	105	Db	dubnium –		59	Pr	praseodymium 140.9	91	Ра	protactinium 231.0				
									ato	rela			4	22	F	titanium 47.9	40	Zr	zirconium 91.2	72	Ξ	hafnium 178.5	104	Rf	rutherfordium -	-	58	Ŭ	cerium 140.1	06	Th	thorium 232.0			
											-		с	21	Sc	scandium 45.0	39	≻	yttrium 88.9	57-71	lanthanoids		89-103	actinoids			57	La	lanthanum 138.9	89	Ac	actinium -			
		2			4	Be	beryllium 9.0	12	Mg	magnesium 24.3	20	Ca	calcium 40.1	38	S	strontium 87.6	56	Ba	barium 137.3	88	Ra	radium -			ids			~							
		1			m	:	lithium 6.9	7	Na	sodium 23.0	19	¥	potassium 39.1	37	Rb	rubidium 85.5	55	Cs	caesium 132.9	87	ŗ	francium -			lanthanoids			actinoids							

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

PMT

12